iM8XM LPDDR4 Board Analysis using SIPro and Memory Designer

Keysight Technologies

11/15/2021

KEYSIGHT

END GOAL: OBSERVE THE EYE RESULTS

• Byte 0 of Channel A Eye Results with 2% Jitter applied

END GOAL: OBSERVE THE EYE RESULTS

• Import board into ADS using ODB++ file type:

Next: Launch SIPro for Analysis

Board in layout

Analysis of Channel A DQ Signals and DQs

END GOAL: OBSERVE THE EYE RESULTS

- Run RapidScan Z0 Tool to check:
 - Substrate stackup is setup correctly
 - View sections of the net

Net Analysis Result (netAnalysis 5)

 Characteristic impedance falls within x% of initial design

Differential Reference 100 ohm			Upper Tolerance 10 pct					Lower Tolerance 10 pct				
Ð	Ne	t Name	Start Pin	End Pin	Total Delay [ps]	Z0 (longest se	ection) Le	ngth [mil]	Width [mil]	Layer	Via Count	ī.
	J DF	RAM_DATA0_A	U1.AE23	U2.82	114.3	39.9		510.1	5.1	I3 (1010)	4	
	J. DF	RAM_DATA1_A	U1.AD24	U2.C2	107.0	39.9		525.0	5.1	I3 (1010)	4	
	J. DF	RAM_DATA2_A	U1.AE22	U2.E2	125.8	39.9		640.2	5.1	I3 (1010)	4	
	J DF	RAM_DATA3_A	U1.AD22	U2.F2	119.7	39.9		612.3	5.1	IB (1010)	4	
]	J" D₽	RAM_DATA4_A	U1.AA24	U2.F4	107.2	39.9		537.4	5.1	I3 (1010)	4	
	J DF	RAM_DATA5_A	U1.Y25	U2.E4	108.8	39.9		542.0	5.1	I3 (1010)	4	
	₽ DF	RAM_DATA6_A	U1.AA25	U2.C4	115.5	39.9		575.0	5.1	I3 (1010)	4	
	J DF	RAM_DATA7_A	U1.AB25	U2.B4	115.7	39.9		546.8	5.1	I3 (1010)	4	
	J° DF	RAM_DATAS_A	U1.AB22	U2.B11	203.7	39.9		853.0	5.1	110 (1024)	2	
	J" DF	RAM_DATA9_A	U1.AA22	U2.C11	201.2	39.9		864.1	5.1	110 (1024)	2	
	J DR	AM_DATA10_A	U1.AA23	U2.E11	196.6	39.9		875.2	5.1	110 (1024)	2	
	J" DR	AM_DATA11_A	U1.AA20	U2.F11	206.9	39.9		937.0	5.1	110 (1024)	2	
	J DR	AM_DATA12_A	U1.AA18	U2.F9	205.8	39.9		928.0	5.1	110 (1024)	2	
	J [™] DR	AM_DATA13_A	U1.AB19	U2.E9	205.7	39.9		928.5	5.1	110 (1024)	2	
	J DR	AM_DATA14_A	U1.AA19	U2.C9	215.3	39.9		984.5	5.1	110 (1024)	2	
	🦨 DR	AM_DATA15_A	U1.AA17	U2.89	210.4	39.9		955.5	5.1	110 (1024)	2	
ctions fo	r DRAM_D/	ATA3_A Delay [ps]	Z0 [ohm]	Length	[mil] Width [m	il] Layer	Start [mil]	End (mi	i) Return F	Path	Via Radius (mil)	
r	Line	2.9	39.6	19.9	6.8	I1 (1006)	1498.0,710.6	1483.9,72	4.6 , 12 (1008)	[GND]		
8	Via	1.1		4.1			1483.9,724.6	1483.9,72	4.6		2.0	
J.	Line	2.9	34.4	17.1	6.1	I2 (1008)	1483.9,724.6	1471.9,73	5.8 1 (1006) [G	iND],		
8	Via	0.8		4.6			1471.9,736.8	1471.9,73	5.8		2.0	
5	Line	103.8	39.9	612.3	3 5.1	I3 (1010)	1471.9,736.8	1384.3,50	7.3 I2 (1008) [G	iND],		
8	Via	1.2		4.6			1384.3,507.3	1384.3,50	7.3		2.0	
s	Line	3.2	37.6	18.9	5.1	12 (1008)	1384.3,507.3	1396.7,49	3.1 1 (1006) [G	iND],		
8	Via	1.2		4.1			1396.7,493.1	1396.7,49	3.1		2.0	
E P	Line	2.6	41.1	18.1	6.4	11 (1006)	1396.7,493.1	1409.4,48	0.3 , 12 (1008)	[GND]		11

Setup DDR Analysis

END GOAL: OBSERVE THE EYE RESULTS

• Set the board up to run DDR analysis of Channel A and corresponding DQs

Analyze SIPro DDR Analysis Results

END GOAL: OBSERVE THE EYE RESULTS

Sub-Circuit Generated:

- View the results:
 - S-Param insertion loss
 - Skew
 - Utilize sub-circuit to generate info for Memory Designer

END GOAL: OBSERVE THE EYE RESULTS

- Memory Designer Setup
- DDR Sim Which Simulator??
 - Statistical: Takes in ibis analog models(.ibs), good for DDR4 msmts
 - Bit-by-bit: Equalization for Rx model, and IBIS-AMI models, good for DDR5 / LPDDR5
 - Transient Convolution: Takes in S-parameter models to convolve them, giving you waveforms

KEYSIGHT TECHNOLOGIES